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EDITORIAL 
 

  It has always been an extremely rewarding experience in putting together the annual 

volume of the Papers of the Applied Geography Conferences. Working with authors of the 

manuscripts expanded my academic vision tremendously. I learned a great deal from 

interacting with reviewers taught about how to help improving manuscripts. I also enjoy 
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  The 34th volume of the Papers of the Applied Geography Conferences includes 
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remote sensing. These papers provide a good testimony that applied geography contributes to 

our society in the most direct way with innovative approaches and scientific methods. 

  As in most edited volumes, manuscript reviewers are the most critical to this 

volume’s success. We are fortunate to have the reviewers who provided timely and thoughtful 

critiques for the manuscripts they help reviewed. In several cases, reviewers went through 

multiple cycles of working with authors to improve the manuscripts. The contributions by the 

reviewers are truly valued and appreciated by all.  

  I wish to acknowledge the financial supports by Kent State University, The 

University of Redlands, Texas Christian University, Texas State University-San Marcos, 

Binghamton University, George Mason University, and Florida Atlantic University. In addition, 

I thank the tireless effort by local organizing committee and support by ESRI, Inc. to make this 

year’s Applied Geography Conference a successful one. 

Of course, our thanks are to ESRI, Inc. for its continuous support to the conference. Without 

these supports, the publication of this volume would have been impossible. 

 

  With best regards, I am, 

 

      Sincerely Yours, 

 

 

          

      Jay Lee 
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1. INTRODUCTION 

 

Landslides are one of the most harmful natural hazards.  Landslides claim lives every 

year and cause substantial damage to property, infrastructure, heritage, and natural capital 

(Chung and Fabbri, 1995; Metternicht et al., 2005).  Inventories of landslides conducted 

between 1964-1999 show a steady increase in number of landslide disasters globally (Nadim 

and Kjekstad, 2009), and it can be presumed that this phenomenon will continue into the future.  

Understanding and managing landscapes with landslides is more important now than ever. 

 Quantitative methods for analyzing relationships between intrinsic and extrinsic 

variables and landslides have increased in popularity in the last decades due to development in 

computer and geographic information systems (GIS) technology (van Westen et al., 2003; Bai 

et al., 2009).  Current techniques for modeling and mapping landslide risk are coupled to one or 

a combination of predictive, stochastic, and deterministic methods (Brenning, 2005; Huabin et 

al., 2005), and require significant computer and spatial analysis knowledge.  Logistic 

regression and discriminant analysis via raster models have been found to be the current 

landslide susceptibility modeling methods of choice (Brenning, 2005).  Other noteworthy 

landslide modeling methods are artificial neural networks analysis (Lee et al., 2003), weights of 

evidence (van Westen et al., 2003), fuzzy logic approach (Kanungo et al., 2006), multivariate 

analysis (Santacana et al., 2003), and bivariate analysis (Bai et al., 2009).  Many methods and 

techniques for evaluating landsides have been proposed or implemented for analyzing 

landslides; however, there remains no agreement on procedures, scope for modeling neither 

landsliding, nor landslide hazard/risk mapping (Huabin et al., 2005). 

While several studies have addressed the relationships between direct and indirect 

variables and landsliding (Brenning, 2005; Huabin et al., 2005), few have addressed how 

landscape form at the landscape scale relate to landsliding conditions, and how those results 

can improve regional susceptibility mapping.  Additionally, there are a limited number of 

landslide studies that have tried to develop modeling and mapping techniques that can be useful 

in locations with data shortcomings.   

This study aims to develop a vector based “landscape unit” spatial investigation 

between landscape form variables and landslide events (total affected area and count), and to 

further understand methods for modeling and mapping landslides and their related 

phenomenon.  Using multivariate statistical methods two null hypotheses are tested: (1) no 

significant relationship exists between landscape form variables and landslide events; and (2) 

spatial and deterministic multivariate statistical techniques do not support and improve ordinary 

least square (OLS) methods.  Using an inventory of landslide events, this research examines the 
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relationship stochastically and deterministically between a digital elevation model (DEM) 

derived variable, land cover, forest patterns, and landsliding in the Republic of Moldova.  

Specifically, exploratory spatial data analysis (ESDA), OLS, simultaneous autoregressive 

(SAR) modeling, and classical discriminate analysis were employed in the ensuing analysis. 

 

 

2. METHOD 

 

2.1 STUDY AREA 

 We have focused our empirical analysis between a DEM derived variable, land cover, 

forest patterns, and landslide events in 74 “landscape units” in the Republic of Moldova.  

Several characteristics of this country make it an ideal site for this study. The annual amount of 

rainfall varies throughout the whole country; the average annual rainfall is roughly 555mm 

(1969-1990) for the country with quantities from 560mm in the north to 370mm in the south 

(Miţul, 2000).  Moldovan geology is relatively consistent throughout the country, with the 

majority of exposed rock features having sedimentary consistency.  The geographic zone of 

Moldova consists mainly of gentle steppe with maximum elevation under 430 meters.  The 

shallow aquifer of the Republic of Moldova has sedimentary origins with a majority of it 

overlain by loess-like loam deposits averaging 8m thick.  The water table ranges from 8m to 

10m in depth for a majority of the country, with a maximum depth of 30m found in the 

Southern Part of the Republic of Moldova (Overcenco et al., 2008).  With that said, the 

Republic of Moldova has been plagued by landsliding almost annually, and all 74 “landscape 

units” have representation of this geomorphological process (Figure 1).   

 

 
 

FIGURE 1 

LANDSLIDES AND LANDSCAPES WITHIN THE REPUBLIC OF MOLDOVA  
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 The country‟s territory is mainly comprised of Neogene sandy and clayey deposits 

from Pliocene-Quaternary alluvial formations.  The landslides are primarily confined to sands 

and clays of Bessarabian sub-stage of the Sarmathian stage, which are located in the northern 

and central parts of the country (Tcaci and Gheorghita, 1995).  To a lesser extent, landslides 

also form in the non-segmented substage of the Sarmathian stage, Meotian stage, and Pontian 

stage that are spread throughout the central and southern part of the country (Tcaci and 

Gheorghita, 1995). 

 There remains no location in the Republic of Moldova that has not been altered by 

anthropogenic forces.  This modification of land-use and land cover has resulted in a great 

variety of development patterns, presenting a unique opportunity to investigate the relationships 

between landscape factors and landsliding dynamics.  As a whole, the country‟s predominant 

land cover is overwhelmingly agricultural lands, while farming is the dominant land use 

activity.  Minimal forestry practices currently operate throughout the country, but do still exist 

and should be noted.  It should also be acknowledged that there is low but prevalent seismic 

activity here.  Agricultural practices, urbanization, historical and current forestry practices, and 

floodplain alterations are the major contributors changing the natural configuration of the 

landscape in the Republic of Moldova. 

 

2.2. MOLDOVA LANDSCAPE UNIT 

 The landscape scale, or specifically the “landscape unit,” may be the best scale for 

analyzing landsliding controls and impacts.  Landscape units for the Republic of Moldova are 

similar to other types of physiographic planning areas in the sense that they are created from 

the aggregation of geographically associated land resource of nearly homogenous land cover, 

land use, elevation, topography, climate, water resources, and soils.  However, landscape units 

developed from the Russian school of landscape science go one step further to include elements 

of animal behavior and human related activities.  The Russian tradition of “geographical 

landscape” can be linked back to Lev Semenovich Berg‟s senior work Geographical Zones of 

the Soviet Union (1947).  It was in this work that Berg spelled out the pioneering definitions of 

geographical landscape and the founding principles of the Russian “landscape unit”.  Berg 

stated that the “geographical landscape is that combination or grouping of objects and 

phenomena in which the peculiarities of relief, climate, water, soil, vegetation, fauna, and to a 

certain degree human activity, is blended into a single harmonious whole” (Berg, 1947).     

 The development of a landscape unit comes from collecting an assortment of land 

data that are used to support each other during all stages of unit classification.  Similar 

physiographic regions have been developed throughout the world.  These areas denote 

similarities in type, quality, and quantity of environmental resources, and are designed to serve 

as a spatial framework for different types of research, assessment, monitoring, planning, and 

resource management.  Source data for the Republic of Moldova landscape units comes from 

Proka‟s (1978 and 1983) works.  Proka‟s Moldovan landscape units come from the culmination 

of over ten years of field surveys and the construction of a multi-hierarchical land management 

system.  The Republic of Moldova‟s multi-hierarchical land management structure is 

systematically divided into four scales: zones (2), regions (5), landscape units (74), and 

elementary landscape features (120).  Proka‟s Moldovan landscape units have been updated 

and digitized for current land management practices (Figure 1). 

The time and costs of a landscape unit analysis are considered less than separate 

geographical theme surveys, and portray areas with similarity in the mosaic of biotic and 

abiotic components of terrestrial ecosystems.  The landscape unit results are directly suitable 

for land evaluation and can be expressed in separate thematic maps or even a single value map 

(Zonneveld, 1989).  For multidisciplinary projects with applied geographical and ecological 

aims (e.g., landslide susceptibility), the landscape unit has been considered an appropriate 

survey and mapping approach scale (Zonneveld, 1989).  Recognition and use of these 

multipurpose landscape areas are critical for structuring and implementing management 

strategies across different governmental agencies responsible for different resources within 
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specific geographical regions.  In this study, the landscape unit scale was used for data 

management, statistical analysis, and mapping purposes.      

 

2.3 LANDSLIDE AND LANDSCAPE DATA 

 Landslide data were quantified for each of the 74 landscape units in the Republic of 

Moldova based on an inventory of landslide events (total affected area and count).  Total 

affected area was calculated by hand digitizing the combined erosion scar and deposit for each 

individual landslide event.  The inventory of landslides was created from referencing 

topographic maps, time periods 1986 and 1989, and LandSat Thematic Mapper (TM) imagery 

from 2000 and 2001.  Through expert visual interpretation this inventory was conducted from 

2001 to 2005 at the Institute of Geography and Ecology, Academy of Sciences of Moldova.  

There are a total of 2,425 landslides events in this inventory. 

 Topographic form is fundamental to any landslide analysis (Huabin et al., 2005).  

Due to the influence of relief on landsliding, construction of DEM derived variables (e.g., 

slope, aspect) are crucial to a multivariate analysis at the landscape scale.  Because of limited 

data availability, the DEM derived variable was calculated at 90m resolution for each of the 74 

“landscape units”.  Using ESRI‟s (2010) ArcGIS 10 Spatial Analyst extension, slope angle was 

created using the SRTM DEM for the Republic of Moldova.  Implementing Hawth‟s Analysis 

Tools version 3.26 (Beyer, 2006), a free extension for ESRI‟s ArcGIS, mean slope angle was 

calculated and summarized for each of the 74 landscape units using the zonal statistics 

function.  The DEM data used in this analysis were provided by the National Aeronautics and 

Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA).  These 

data were collected in 2000-2001 via SRTM instrument at 60m resolution and after projecting 

can be used in raster format at 90m resolution.   

Land cover (composition) and forest patterns (configuration) were quantified using 

landscape ecology metrics developed for quantifying the spatial arrangement of land cover and 

land use (McGarigal et al., 2002).  Land cover data used in this analysis were hand digitized 

from digital orthophotographs from 2004.  Through expert visual interpretation, these data were 

classified into two classification groups using FAO classification schemes at the Institute of 

Geography and Ecology, Academy of Sciences of Moldova.  For this analysis, we have 

reclassified the FAO land cover data into eight classes based on Anderson et al. (1976) land use 

and land cover classification system.  FRAGSTATS version 3.3 (McGarigal et al., 2002), free 

and publicly accessible software was used for computing composition and forest pattern 

metrics for each landscape.  The reclassified land cover data was converted into raster format, 

preserving a 30m resolution.  Four major land cover variables and 55 landscape forest class 

metrics were computed for each of the 74 landscape units used in the following statistical 

analysis.  As there is no causal ordering in space as there is in time, and there remains no 

minimum set of landscape metrics for capturing the majority of landscape structure (Fortin et 

al., 2003; Wagner and Fortin, 2005), a number of forest class metrics were calculated and then 

statistically reduced into a highly relevant subset. 

Principal Components Analysis (PCA) and Robust Pearson correlations were used to 

reduce the set of landscape forest class metrics.  Metrics with strongest loadings that exhibited 

different patterns of orthogonal axes were selected.  All remaining independent landscape form 

variables were then reduced further by Robust Pearson correlations, to remove metrics that 

exhibited a high degree of multicollinearity (r > 0.75).  Fourteen explanatory landscape form 

variables remained to be used in the forthcoming stepwise regression analysis.  To meet the 

assumptions of normality for all variables required during parametric tests, we used two types 

of transformation: negative arcsine (proportion data) and log10 (length/score data).  The 

remaining landscape form variables were standardized using a z-transformation to set all 

parameters to a mean of 0 and variance of 1.  Other software packages implemented in this 

analysis were: SYSTAT 12 and JMP version 9 (SAS Institute, 2010). 
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2.4 DATA ANALYSIS 

 The first law of geography states that things that are near are more similar 

(autocorrelated) than things that are farther apart (Tobler, 1970; Fortin and Dale, 2005).  In 

spatial environmental studies it is imperative to take into account spatial autocorrelation.  

Spatial autocorrelation is the lack of independence between pairs of observation at given 

distances in time and space and is commonly found in environmental data (Legendre, 1993).  In 

order to evaluate the spatial patterns of landslide affected area and landslide count throughout 

the Republic of Moldova, an exploratory spatial data analysis (ESDA) was conducted. For this 

study a common ESDA technique, spatial autocorrelation index global Moran‟s I-test, was 

applied.  Spatial autocorrelation index scores vary from each other; however, positive scores 

indicate similar values are spatially clustered and negative scores indicate unlike values are 

spatially clustered (Wong and Lee, 2005). ESDA is frequently used in studies of geographical 

ecology and macroecology (Lichstein et al., 2002; Wagner and Fortin, 2005; Dormann et al., 

2007; Rangel et al., 2010), and can be particularly useful when testing spatial autocorrelation in 

environmental systems.  Spatial Analysis in Macroecology (SAM) version 4, software 

specifically developed to address spatial data needs found naturally in macroecological and 

biodiversity data (Rangel et al., 2010), was employed to assess the independence and level of 

spatial autocorrelation of landslide total affected area and count across the 74 landscapes. 

Spatial autocorrelation is problematic for classical statistical test (e.g., ANOVA, 

ordinary least squares regression) because it violates the assumption of independently 

distributed errors (Lichstein et al., 2002), and the standard errors are usually undervalued when 

positive autocorrelation is present increasing the potential for type I error rates (falsely 

rejecting the null hypothesis of no effect) (Dormann et al., 2007).  Furthermore, spatial 

autocorrelation can cause a shift in regression coefficients depending on whether spatially 

explicit or non-spatial modeling is used (Bini et al., 2009).  Spatial autocorrelation may be 

particularly problematic in regional-scale studies because landscape form (e.g., land cover) is 

typically not uniformed over space and often correspond with the underlying foundation (e.g., 

geology, soils) of its landscape.  In landscape scale research this phenomenon is occasionally 

acknowledged and rarely addressed quantitatively (King et al., 2005).  Lennon (2000) called 

attention to the problems associated with autocorrelation in ecological research „red herrings‟ 

and argued that virtually all geographic analyses had to be redone by taking into account spatial 

autocorrelation.  

 To prevent errors associated with spatial autocorrelation in the multivariate 

regression analysis, a simultaneous autoregressive (SAR) model was used to examine the 

relationships between the independent landscape variables and landslide affected area.  SAR is 

a spatial statistical modeling technique that uses a variance-covariance matrix based on the 

non-independence of spatial observations (Kissling and Carl 2007).  SAR and other 

autocovariate models address spatial autocorrelation by estimating how much the response 

variable at any one site reflects response values at surrounding sites; albeit, this is achieved by 

adding a distance-weighted function of neighboring response values to the model‟s explanatory 

variables (Dormann et al., 2007).  Conditional autoregressive (CAR) modeling is unsuitable 

when directional processes (e.g., landsliding) are coded as non-Euclidean distances, resulting in 

an asymmetric covariance matrix (Dormann et al., 2007), thus SAR should be employed when 

directional processes are known.  As in other multivariate regression techniques, the dominant 

autoregressive practice is to rank the standard partial regression coefficients (Sokal and Rohlf, 

1995) or associated t-values of coefficients of explanatory variables (Tognelli and Kelt, 2004) 

under the assumption that higher coefficients represent stronger “effects” on the dependent 

variable (Bini et al., 2009).  SAM version 4 was used to calculate and interpret the multivariate 

SAR model. 

As suggested by Shaker et al. (2009) deterministic statistics, through the use of 

classical discriminant analysis, were added to this study to help validate the multivariate 

landscape form model and provide a means for accuracy assessment.  The purpose of 

discriminant analysis is to find and/or test a linear equation (discriminant function) to separate 

two or more groups of objects with respect to several variables simultaneously (Klecka, 1980).  
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In this study, we categorized the number of landsides into four categories of susceptibility- low, 

moderate, high, and very high (Figure 2).  Dividing the range of landslide count into four equal 

groups created the categories for landslide susceptibility: low (1-35), moderate (36-71), high 

(72-106), and very high (107-142).  A challenge lies when investigating and comparing 

discriminant models with low to moderate correlations, relating to which model is the most 

discriminant model.  Wilks‟ lambda is frequently used to test differences between the means of 

identified groups for a combination of dependent variables selected for a discriminant model 

(Klecka, 1980).  Because Wilks‟ lambda is a kind of inverse measure, significance levels near 

zero denote high discrimination between groups.  Generally, if the Wilks‟ lambda significance 

level is less than 0.05, then this represents sufficient discriminatory power. 

 

 

FIGURE 2 

GROUPED LANDSLIDE EVENTS INTO LOW, MODERATE, HIGH, AND VERY HIGH 

SUSCEPTIBILITY 

 

 Independent landscape form variables were reduced to those that significantly 

correlated with landslide total affected area using a multivariate statistical technique.  This 

exploratory analysis for model development used a forward stepwise regression method (P-

value = 0.05 to remove).  A multivariate landscape form model explaining landslide total 

affected area was created to test our hypotheses. 

 

 

3. RESULTS 

 

3.1 EXPLORATORY SPATIAL DATA ANALYSIS 

 Taking all 74 landscapes into account, the Global Moran‟s I analysis revealed strong 

spatial autocorrelation in both quantifications of landslide events.  For total affected area by 

landslides, Global Moran‟s I index reported a score of 0.26, z-score = 4.27.  For number of 

landslides, Global Moran‟s I index reported a score of 0.16, z-score = 2.66.  Both landslide 

events (total affected area and count) Global Moran‟s I scores signify that there is less than 1% 

likelihood that these clustered patterns could be the result of random chance.  
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3.2 STOCHASTIC AND DETERMINISTIC ANALYSES  

 Results of the stepwise exploratory analysis eliminated nine of the remaining 14 

independent landscape form variables.  The remaining five variables combined to make a 

landscape form multivariate model for explaining landslide total affected area.  The model 

consists of one topographic form metric, two land cover composition metrics, and two forest 

class configuration metrics (Table 1A).  The one topographic form metric was mean slope 

angle (MEAN LANDSCAPE SLOPE).  The two land cover compositions metrics were: 

percent agricultural land (PERCENT AGLAND) and percent forest land (PERCENT 

FOREST).  The two forest class configuration metrics were: landscape shape index (LSI) and 

Aggregation Index (AI). 

 

TABLE 1 

SIMULTANEOUS AUTOREGRESSIVE (SAR) MULTIPLE REGRESSION FOR TOTAL 

LANDSLIDE AFFECTED AREA AS A FUNCTION OF MOLDOVA LANDSCAPE FORM.  

(A) FINAL AUTOREGRESSIVE MODEL SHOWING STANDARDIZED COEFFICIENTS; 

(B) OVERALL SIGNIFICANCE OF FINAL MODEL. 
A. Standardized autoregressive model 

Effect  
Variable 

OLS Coeff. SAR Coeff. Std. Coeff. Std. Error t-Ratio P-value 

CONSTANT < 0.001 -2.22 0.00 0.68 -3.264 0.002 

MEAN DEGREE SLOPE 0.84 0.39 0.39 0.16 2.5 0.015 

PERCENT AGLAND -0.82 -0.64 -0.64 0.14 -4.59 <0.001 
PERCENT FOREST -1.42 -1.34 -1.34 0.17 -7.97 <0.001 

LSI 0.41 0.62 0.62 0.10 5.95 <0.001 
AI 0.51 0.78 0.78 0.14 5.81 <0.001 
 

B. Analytical results 

Dependent Variable Landslide Affected Area 

N: 74 

Correlation Coefficient: R (trend) 0.78 

Coefficient of Determination: R-Square (trend) 0.61 
Correlation Coefficient: R (fit) 0.91 

Coefficient of Determination: R-Square (fit) 0.83 

Spatial Autoregressive Parameter (rho) 0.99 
Alpha 1.00 

F-ratio 8.84 

P-value <0.001 

Trend: represents the explanation by factors only 

Fit: represents the full model including space 

 

 Based on OLS methodology, the five aforementioned landscape form metrics 

combined to explain 61 percent of the variation in landslide total affected area (R2 = 0.61, P < 

0.001), among Republic of Moldova landscapes (Table 1B).  Based on OLS methodology, the 

strongest positive influence of an individual landscape form metric predicting total affected 

area by landslides was mean slope angle (MEAN LANDSCAPE SLOPE, OLS coeff. = 0.84, P 

< 0.015, Table 1).  Based on OLS methodology, the strongest negative influence of an 

individual landscape form metric predicting total affected area by landslides was percent forest 

land (PERCENT FOREST, OLS coeff. = -1.42, P < 0.001, Table 1).   

Because a high degree of spatial autocorrelation was found in the response parameter, 

SAR methodology provided an improvement over OLS.  The five landscape form metrics 

combining to explain 83 percent of the variation in landslide total affected area (R2 = 0.83, P < 

0.001), spatially through the Republic of Moldova landscapes (Table 1B, Figure 3A).  Based on 

SAR methodology, the strongest positive influence of an individual landscape form metric 

predicting total affected area by landslides was Aggregation Index (AI, std. coeff. = 0.78, P < 

0.001, Table 1). Based on SAR methodology, the strongest negative influence of an individual 

landscape form metric predicting total affected area by landslides remained percent forest land 
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(PERCENT FOREST, std. coeff. = -1.34, P < 0.001, Table 1).  Investigating spatial 

autocorrelation of the landscape form multivariate model further, autocorrelation has been 

minimized from the SAR methodology based on normal distribution of model residuals (Figure 

3B) and correlogram of Moran‟s I model residuals (Figure 3C). 

 

 

FIGURE 3 

(A) ACTUAL VERSUS PREDICTED PLOT FOR LANDSLIDE AFFECTED AREA;  

(B) FREQUENCY DISTRIBUTION DISPLAYING DISTRIBUTION OF SAR MODEL 

RESIDUALS; AND (C) SPATIAL CORRELOGRAM DISPLAYING LANDSLIDE 

AFFECTED AREA, ESTIMATED LANDSLIDE AFFECTED AREA, SAR MODEL 

RESIDUALS, AND SAR MODEL ERROR.   

 

The results from the classical discriminant analysis revealed that the five landscape 

form metrics combined to explain 73 percent of the variation in four groups of landside count 

(Rc2 = 0.73, P = 0.000), among Republic of Moldova landscapes.  Wilks‟ lambda significance 

test revealed that the landscape form model represented sufficient discriminatory power 

(Wilks‟- = 0.0000).  A jackknifed cross-validation technique was adopted for accuracy 

assessment of the discriminant landscape form model; albeit, reporting 68 percent correct 

across the four equal groupings of landslide susceptibility (Table 2).  
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TABLE 2 

JACKKNIFE CLASSIFICATION MATRIX OF GROUPED LANDSLIDE COUNT FROM 

FINAL MODEL 

 Low Moderate High Very High % Correct 

Low 38 14 1 0 72 

Moderate   2   9 0 3 64 

High   0   0 0 1   0 

Very High   0   1 2 3 50 

Total 40 24 3 7 68 

 

 

4. CONCLUSION  

 

 Our analysis reveals that landslide events are affected by a complexity of landscape 

form variables simultaneously across landscapes in the Republic of Moldova.  Thus, the first 

null hypothesis can be rejected because statistically significant relationships were found 

between landscape form metrics and landscape affected area across 74 landscapes.  The second 

null hypothesis stated spatial and deterministic multivariate statistical techniques do not support 

and improve OLS methods.  Although covariate rank changed between OLS and SAR methods, 

directionality of all responses remained the same; furthermore, SAR explained 22 percent more 

of the variation in landslide total affected area.  Deterministic statistics provided an 

improvement to OLS methodology with accuracy assessment.  With these combined results, the 

second null hypothesis is also rejected.  Much work remains for applied geographers to 

improve procedures, modeling, and mapping of landslide related phenomenon.   
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