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The current integrity of the planet is being stressed beyond its biological capacity, and understanding urban land-
scapes is more important now than ever. A major landmark in human–planetary evolution was reached recently with a
majority of people now living in cities, and rural-to-urban migration is predicted to continue into the next century.
Landscape change associated with exponential population growth poses major challenges to coupled human and
natural systems. Although some progress has been made, to date there exist no ‘ideal’ instrument for achieving
sustainability on neither regional nor local scales. Because there is limited applied evidence investigating landscape
form (e.g. configuration) and population dynamics (e.g. population density) with measures of sustainability, this
research area requires further investigation. Using Human Wellbeing Index (HWI) and Ecosystem Wellbeing Index
(EWI) from Robert Prescott-Allen’s The Wellbeing of Nations: A Country-by-Country Index of Quality of Life and the
Environment, a macroscale empirical study was created to further understand sustainable urban development across 33
European countries. Exploratory spatial data analysis was utilized to illustrate Wellbeing clusters across the study
area, and spatially enabled regression methods were employed to create regional sustainable urbanization models for
explaining Wellbeing indices. With population density, two urban class configuration metrics (e.g. COHESION, PD)
were found significant at explaining both HWI and EWI. Between 2000 and 2006, changes in urban morphology and
population density were also assessed for 31 of the aforementioned 33 European countries. Findings suggest that
conventional urbanization processes will continue to disconnect socioeconomic welfare from life-supporting ecosys-
tem services.

Keywords: applied sustainability science; landscape change; landscape ecology; macroscale ecology; sustainable develop-
ment planning; spatial autoregressive modeling; spatiotemporal analysis; urban configuration

1. Introduction

Anthropogenic stressors to Earth’s life-supporting ecosys-
tems will continue to increase as global human popula-
tion increases. During the 1987 World Commission on
Environment and Development, the Brundtland
Commission’s report, Our Common Future, confirmed
that global population had surpassed its ecological carry-
ing capacity. Carrying capacity is the largest number of
any given species (e.g. Homo sapiens) that a habitat (e.g.
Earth) can support indefinitely (Keiner 2005).
Humankind’s resource demands, measured by ecological
footprint (EF) at the global scale, now surpasses the
planet’s natural biocapacity by roughly a 50% overshoot;
furthermore, the consumption rate of sea and land
resources has been projected to require two Earths by
the 2030s (WWF 2014). Humanity’s population has
grown exponentially since the Industrial Revolution of
the late 1700s (Wu 2008), and some continents (e.g.
Africa) will likely see this geometric growth into the
next century. Recently, with an 80% probability, world
population was projected to increase to between 9.6 and
12.3 billion by 2100 and likely continue growing there-
after (Gerland et al. 2014). These findings refute previous
studies (i.e. Lutz et al. 2001; UN 2004) that total global

population growth would stabilize just over 9 billion by
2100.

The ecological integrity of the planet is stressed far
beyond its limits (WWF 2014), thus understanding
human-dominated landscapes is more important now
than ever. Specifically, the transition from the natural/
native landscapes to urban landscapes is having the great-
est impact on Earth (Wu 2010). Metabolization of natural
habitat for human need has resulted in fragmented land-
scapes that are increasingly vulnerable to anthropogenic
disturbances (Leu et al. 2008). It has been commonly
accepted that human impacts are not limited to a single
area, as disturbances influence multiple ecosystems’ great
distances from their initial establishment (Turner et al.
2001; Alberti 2008). The metabolization of healthy and
ecologically intact landscapes to support human needs has
been consistently recognized as one of the most unsettling
of all human activity (Foley et al. 2005; Liu et al. 2007).
Landscape change influences natural systems across spa-
tial and temporal scales by fragmenting landscape patches,
isolating habitats, abridging ecosystem dynamics, introdu-
cing exotic species, controlling and modifying distur-
bances, escalating climate change, reducing global
biodiversity, altering hydrological cycling, and disrupting
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nutrient cycling and energy transfer (Alberti 2005, 2008;
Foley et al. 2005; Hoegh-Guldberg et al. 2007; Liu et al.
2007; Grimm et al. 2008; Milly et al. 2008; Pickett et al.
2011).

Increasingly, sustainability scientists have focused on
understanding the complex dynamics that result from
coupled environmental and human systems (Clark 2007).
Landscape ecology, a practice for understanding relation-
ships between geographical patterns and ecological pro-
cesses across temporal and spatial scales (Wu & Hobbs
2007), has become the focal discipline for operationalizing
sustainable development (Wu 2008). Landscape ecology
and sustainability science are both concerned with the
complex interactions between society and nature (Clark
& Dickson 2003; Reitan 2005). Further, they are both
devoted to solution-driven and place-based research that
integrates all three facets of sustainability (economic wel-
fare, environmental quality, and social equity) across local,
regional, and global scales (Wu 2008). Evaluation, or
calibration, of landscapes can be provided through existing
measures of sustainability, and are vital for assessing land-
scape functions for sustainable development purposes
(Mander & Uuemaa 2010). Evaluation indices convey a
rapid single-number impression of site characteristics that
are used widespread in ecological and landscape ecologi-
cal studies (Spellerberg 1992). Indicator-based assessment
of landscape function provides a fundamental method for
modeling relationships during sustainable landscape plan-
ning (Leitão & Ahern 2002; Mander & Uuemaa 2010).
Although landscape ecology research has focused on sus-
tainability goals, there remain limited modifications to
sustainable development policy or to sustainable land use
decision-making (Naveh 2007).

The existing challenges of sustainable development
remain in its operationalization (Keiner 2006). Effort
must be made for the application of initiatives that do
not merely pay lip service to the words, but earnestly do
justice to its conceptual roots (e.g. sustainable yield)
(Campbell 2000). Modeling, assessment, and monitoring
of coupled human–environmental systems can be accom-
plished through the use of landscape ecology metrics
within various spatial science tools (e.g. GIS) (i.e.
Shaker et al. 2010; Shaker & Ehlinger 2014). For applied
environmental management and planning purposes, land-
scape pattern studies have revealed ecological associations
to urbanization through use of evaluation indices (i.e.
Shaker & Ehlinger 2014). Recently, several analyses
have been successful at using landscape ecology metrics
to assess the spatiotemporal dynamics of urbanization (i.e.
Weng 2007; Shrestha et al. 2012; Su et al. 2012). Albeit,
progress has been made at elucidating dynamic pattern on
process, the age-old question of what the ‘optimal’ urban
form remains as open as it has ever been (Batty 2008).

An empirical study is presented hereafter to investigate
if recent urbanization trends move us closer to, or farther
away from, sustainability. Specifically asked: (a) how does
the urban mosaic at the macroscale help to explain mea-
sures of sustainable development across 33 European

countries and (b) can those statistical associations be
used to elucidate findings from an urban landscape change
analysis for 31 of the aforementioned 33 European coun-
tries between 2000 and 2006. To address these questions,
three null hypotheses are tested: (1) no significant relation-
ship exists between urban landscape form and population
characteristics and Human Wellbeing Index (HWI) across
Europe; (2) no significant relationship exists between
urban landscape form and population dynamics and
Ecosystem Wellbeing Index (EWI) across Europe; and
(3) recent European urbanization trends do not move us
closer to global sustainability. This research aims to help
operationalize sustainable development through expanding
scientific understanding, and by providing methods for
modeling and monitoring sustainable urbanization across
macroscales.

2. Study area

This empirical analysis of sustainable urbanization focuses
on 33 countries within Europe (Figure 1). Several attri-
butes of this region make it an optimal location for this
research. Europe, one of the world’s seven continents, is
recognized as the birthplace of Western culture and urba-
nization. Urbanization is a fundamental characteristic of
European civilization, and has progressively spread from
the Southeast around 700 B.C. to the whole continent
(Antrop 2004). Europe, the second smallest continent by
surface area, is divided from Asia by the watershed divi-
sions of the Caucasus and Ural Mountains, the Ural River,
the Caspian and Black Seas, and the waters linking the
Black and Aegean Seas (Ostergren & Le Bossé 2011).
Countries, like ecoregions, are areal units defined by a
combination of similar geographic characteristics (e.g.
geology, vegetation, beliefs, language), which have a
mature history spanning centuries for any of the study
area nations. Encompassing roughly 6.8% of Earth’s land
area, Europe has the highest country and population den-
sities of all continents. Although some nations are in
population decline, approximately 11% (2010) of the
world’s population remains in Europe, where four out of
five residents dwell in urbanized regions (EC 2006). Total
population specific to the study area countries is above
560 million (2012).

The 33 independent nation-states were chosen from
the approximate 50 encompassing the continent of
Europe. Nation-states were included in this study if they
were dually represented in Prescott-Allen’s (2001) The
Wellbeing of Nations: A Country-by-Country Index of
Quality of Life and the Environment, and the circa 2000
land cover data set put forth by the European Union’s
coordination of information on the environment
(CORINE). The 33 European countries are mostly contig-
uous, minus the Russian lands between Lithuania and
Poland, the territories making up Kosovo, Montenegro,
and Serbia, and Switzerland. Exclusive to the study area,
the combined sovereign states or dependent territories
cover about 5.8 million km2. Lastly, European nations
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can be recognized for starting the modern sustainable
development movement, and it can be contended that
European nations continue to lead the endeavor.

3. Materials and methods

3.1. Wellbeing of nations’ indices

Indicators are progressively acknowledged as useful tools
for planning and policy-making because they deliver evi-
dence on a nation’s progress toward their individual targets
within the three subareas of sustainability (Shaker &
Zubalsky 2015). Over two decades have passed since
Agenda 21 petitioned for sustainable development indica-
tors; however, there remains no agreement concerning the
best approach to their use or design. For this study, it is
believed that sustainable urban development is best
assessed if the three facets of sustainability (economic
welfare, environmental quality, and social equity) are orga-
nized independently into either socioeconomic or environ-
mental conditions. In doing so, the ensuing analysis uses
HWI and EWI from Robert Prescott-Allen’s (2001) The
Wellbeing of Nations: A Country-by-Country Index of

Quality of Life and the Environment, as landscape evalua-
tion metrics.

The 33 study area countries were selected partially by
Wellbeing of Nations representation; furthermore scores
range from 24 to 82 and 20 to 49 for HWI and EWI,
respectively (Figure 2). Both multi-metric sustainable
development indices scale between 0 and 100, with increas-
ing values corresponding to improved sustainability condi-
tion. Additionally, index scores have been divided into five
equal groups to provide a narrative scale of well-being:
good (100–81), fair (80–61), medium (60–41), poor (40–
21), and bad (20–1) (Prescott-Allen 2001). Across the 180
nations, only Denmark, Finland, and Norway have a ‘good’
HWI. Of the 180 countries surveyed, 48% had a ‘poor’ or
‘bad’ EWI; 9% were ‘fair,’ and none scored ‘good.’ Source
data for Wellbeing indices were collected between 1997 and
1999. HWI includes more socioeconomic input variables
than many other popular human-focused sustainability
measures (e.g. Human Development Index). HWI is the
equally weighted average of 36 metrics across the following
five categories: heath and population [2 indicators]; wealth
[14 indicators]; knowledge and culture [6 indicators]; com-
munity [10 indicators]; and equity [4 indicators] (Prescott-

Figure 1. Study area countries displaying CORINE Urban Morphological Zones (UMZ) for 2000.

International Journal of Sustainable Development & World Ecology 3
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Allen 2001). EWI is a comprehensive measure of environ-
mental condition, and is more holistic in its evaluation than
many other popular environmentally focused sustainability
measures (e.g. EF). EWI is the equally weighted average of
51 metrics across the following five categories: land [5
indicators]; water [20 indicators]; air [11 indicators]; spe-
cies and genes [4 indicators]; and resource use [11 indica-
tors] (Prescott-Allen 2001). For the 33 study area countries,
a Pearson product-moment correlation coefficient test (two-
tailed) rendered HWI and EWI statistically independent
(r = −0.24, P = 0.170). Although the single number scores
of HWI and EWI effectively describe socioeconomic or
environmental condition of sustainability, and could be
used for temporal monitoring and management, the
Wellbeing Assessment has only been calculated once.

3.2. Landscape data

Patterns of urbanization were quantified at the country
scale using key population and land cover data sets across
Europe. Population dynamics data for 2000 and 2006
were obtained from the European Union’s Eurostat, the
United States Central Intelligence Agency World
Factbook, or a country’s unique census program.
Territorial boundary data for each nation were sourced
from the GADM (ver. 2) database of Global
Administrative Areas (www.gadm.org). Each country
should be considered as its own landscape for this study.
From these data, the following seven population dynamics
variables were derived for each country: area, perimeter,
total population, population density, number of cities with
population greater than 250,000, and number of cities with
population greater than 500,000. Ideally, urban population
density would have been included within this analysis but
those data were not readily available for all study area
countries.

Urban form data came from 2000 (ver. 15) and 2006
(ver. 15) CORINE land cover (CLC) data administered
through the European Environmental Agency (EEA).
The EEA, beginning operations in 1994, is an organization
of the European Union for providing robust, objective
information on the environment. The EEA’s mandate is
to help the European Community and its collaborating
territories make educated decisions about improving envir-
onmental integrity, integrating environmental needs into
economic policies, and moving towards sustainability.
2000 CLC data were interpreted from Landsat-7 ETM
imagery for 32 participating nations circa 2000
(± 1 year), and 2006 CLC data were construed form IRS
LISS III and/or SPOT-4 for 38 nations circa 2006
(± 1 year) (EEA 2007). The following basic parameters
are the same for both CLC2000 and CLC2006: choice of
scale of 1:100,000, a minimum mapping unit of 25 hec-
tares, and minimum width of linear elements of 100 m.
CLC data are provided through either a 100-m or 250-m
seamless raster database. The standardized CLC nomen-
clature includes 44 land cover classes grouped into three
hierarchical levels; furthermore, both CLC2000 and
CLC2006 data sets have a geometric accuracy better than
100 m and thematic accuracy greater than 85% (Büttner &
Maucha 2006; EEA- European Environment Agency
2007).

Specifically, this study uses only the predefined
100-m data sets know as urban morphological zones
(UMZs) for 2000 and 2006 created from CLC2000
and CLC2006, respectively. UMZ describe the urban
tissue of an area by reclassifying several urban impacted
land cover classes, which are less than 200 m apart, into
a single class data set (Simon et al. 2010). Urban
proportions (composition) and patterns (configuration)
were quantified from CORINE UMZ data sets with
landscape ecology metrics established for quantifying

Figure 2. Relative distribution of Human Wellbeing Index (HWI) and Ecosystem Wellbeing Index (EWI) scores for the 33 study area
nations.
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the heterogeneous mosaic of land use and land cover
(Turner et al. 2001; Leitão et al. 2006; McGarigal et al.
2012). FRAGSTATS version 4.1 (McGarigal et al.
2012), free and publicly available software, was used
for calculating land cover compositions and configura-
tion for each country landscape. During landscape pro-
cessing, UMZ data were preserved at 100 m resolution,
and queen contiguity was selected for class-level metric
calculation. As there remains no minimum set of land-
scape ecology metrics for capturing the majority of
landscape structure (Wagner & Fortin 2005), 50 UMZ
class metrics were calculated for multivariate reduction
into a highly relevant subset.

3.3. Data analysis

This study emphasized the importance of investigating
coupled human–environmental systems at macroscales.
‘Macroscales,’ extents larger than landscapes, can be
defined as regional or continental scales with distances
spanning hundreds to thousands of kilometers (Urban
et al. 1987). At these extents, the biological (e.g., species,
population, communities), geophysical (e.g. climate, phy-
siography, hydrology, geochemistry), socioeconomic (e.g.,
cultures, economics, political systems) components of
Earth synergize into ‘macrosystems,’ and many environ-
mental problems have their causes and consequences at
these geographic scales (Heffernan et al. 2014). A spatially
enabled method was constructed to systematically analyze,
model, and monitor sustainable urbanization through
space and time using a five-step process. To meet the
normality requirement for parametric tests, non-Gaussian
distributed variables were transformed using common
methods. The Shapiro–Wilk normality test was used to

determine if transformation was needed, and which math-
ematical operation was most effective per variable.

First, the multivariate statistical methods, principal
components analysis and correlation coefficient (r) analy-
sis, were used to reduce UMZ landscape measures. UMZ
class metrics with strongest loadings on orthogonal axes
were kept. The seven previously established population
characteristic and 24 remaining landscape metrics were
then reduced further using Pearson’s correlation analysis,
to remove metrics that exhibited a high degree of colli-
nearity (r > 0.75). When statistical redundancy occurred
between two predictor variables, the metric with natural
Gaussian distribution, literary justification, and statistical
relevance to both HWI and EWI was chosen.

Second, a priori regression models were developed to
test the first two hypotheses. The remaining urban land-
scape variables were modeled against HWI and EWI
through standard ordinary least squares (OLS) multiple
regressions, refined within a multimodel selection frame-
work (Burnham & Anderson 2002; Diniz-Filho et al.
2008). All conceivable models that could be acquired by
combining five predictors (Table 1) were produced (i.e. 31
for both HWI and EWI), and the Akaike weight (wi) of
each model was calculated; wi is an Akaike Information
Criterion (AIC)-derived index that reflects the probability
that model i is actually the best explanatory model among
all possible models (Terribile et al. 2009). Finally, a priori
OLS models were compared and ranked based on their
coefficient of determination (R2) and corrected Akaike
Information Criterion (AICc). As a preferred measure of
model fit, the lower the AICc values the closer the approx-
imation of the model is to reality; however, a ‘serious’
difference between two models is when the difference in
AICc differs by at least three (Fotheringham et al. 2004).
To measure the impact of multicollinearity, the variance

Table 1. Selected independent population and urban landscape variables.

Abbreviation Name Description Justification

Pop. Density* Population density Number of people in the country,
divided by total country area

A measure of human
abundance

PLAND* Percent urban Total urban morphological area Composition measure
morphological zone in the country, divided by total country

area
PD* Patch density Total number of urban patches in the country,

divided by 100 hectares (#/100 ha)
Fragmentation index

COHESION* Patch cohesion index 0 ≤ COHESION < 100. Approaches 0 as the
proportion of the country comprised of the urban
class decreases, and becomes increasingly
subdivided and less physically connected

A measure of physical
connectedness

PROX_CV -- ♮ Proximity index
coefficient of variation

The area sum of all urban patches
whose edges are within a specific search radius of
the focal urban patch, divided by the square of its
distance from the focal patch

A measure of isolation/
proximity

Notes: All landscape measures computed based on CORINE raster data with 100 m cells, and using 8-neighbor rule.
See Leitão et al. (2006) and McGarigal et al. (2012) for metric details and equations.
♮Calculated using a search radius of 1 km.
--Denotes random spatial pattern.
*Denotes < 1% chance spatial pattern is random.

International Journal of Sustainable Development & World Ecology 5
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inflation factor (VIF) was assessed. VIF > 10 indicates
definite problems of multicollinearity; VIF > 2.5 indicates
potential areas of concern.

Third, for all remaining variables, the level of spatial
autocorrelation was assessed using the common explora-
tory spatial data analysis (ESDA), global Moran’s I-test.
Spatial autocorrelation, the lack of numerical indepen-
dence of an attribute across space, is frequently found in
geographically managed and distributed data (Legendre &
Legendre 1998). Spatial autocorrelation poses difficulties
when using classical parametric statistical tests (e.g.
ANOVA), because it violates the necessity of distributed
error independence (Legendre & Legendre 1998; Haining
2003). Additionally, standard errors are likely underesti-
mated when positive autocorrelation is present and Type I
errors (incorrect rejection of a true null hypothesis) could
be strongly inflated (Legendre & Legendre 1998;
Dormann et al. 2007). Furthermore, spatial autocorrelation
can cause a shift in regression coefficients depending on
whether a global or local autoregressive approach is used
(Bini et al. 2009). The existence of spatial autocorrelation
is seen as a significant limitation for hypothesis testing and
prediction (Lennon 2000; Dormann et al. 2007). Lennon
(2000) called spatial autocorrelation in ecological studies
‘red herrings’ and contended that practically all analyses
over space need to be reconsidered. Wagner and Fortin
(2005) also suggested using analysis techniques that allow
for scrutinizing residuals spatially. Further, Boots (2002)
suggested when species (e.g. Homo sapiens) are impacted
by numerous processes over their range, inference should
be performed using locally enabled statistics. One benefit
of spatial autocorrelation is that it can provide useful for
assessing pattern relationships to process. To illustrate
spatial clustering of HWI and EWI, the local index of
spatial association (LISA) Anselin Moran’s I-test was con-
ducted using queen contiguity.

Fourth, to address errors associated with spatial auto-
correlation in regression analysis, a local conditional auto-
regressive (CAR) technique was used. CAR is a spatial
auto-Gaussian technique that corrects for errors in regres-
sion models (Wall 2004). CAR addresses spatial autocor-
relation by estimating how much the response variable at
any one site reflects response values at surrounding sites,
which is achieved by adding a distance-weighted function
of neighboring response values to the model’s explanatory
variables (Dormann et al. 2007). As in most multiple
regression interpretation, the dominant autoregressive
practice is to rank the standard partial regression coeffi-
cients (Sokal & Rohlf 1995) or associated t-values of
coefficients of explanatory variables (Tognelli & Kelt
2004) under the assumption that higher coefficients repre-
sent stronger ‘effects’ on the dependent variable (Bini
et al. 2009). Finally, CAR model residuals were assessed
by global Moran’s I statistic, histogram and spatial corre-
logram. Analyses were performed using ESRI’s ArcMap
10.2 Spatial Statistics toolbox, JMP (ver. 11) (SAS 2013),
and Spatial Analysis in Macroecology (ver. 4) (Rangel
et al. 2010).

Fifth, to test the third and final hypothesis, a landscape
change analysis was conducted on 31 of the aforemen-
tioned 33 study area countries. The United Kingdom and
Greece were not assessed in the landscape change analysis
because they were excluded from the CLC2006 data set.
Urban landscape variables found statistically associated to
both HWI and EWI during regression analyses were com-
puted for 2006. Next, the average rate of change for each
urban and population metric was calculated using the
following equation (Su et al. 2011):

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1½ �R2

R1

r
� 1

where R is the rate of urban expansion; R1 is the capacity
of urban landscape metric at the date t1; R2 is the capacity
of urban landscape metric at the date t2; and n is the
difference of years between the two dates (in this case,
six years between 2000 and 2006).

4. Results

4.1. Exploratory spatial data analysis

Taking all 33 countries’ landscapes into account, Global
Moran’s I revealed varying levels of spatial autocorrelation
for both the dependent variables and independent vari-
ables. Four out of the five independent variables recorded
less than 1% chance of having a random spatial pattern
(Table 1). ESDA reported HWI and EWI to be spatially
dependent on their neighbors. The Global Moran’s I score
for HWI was 0.31, z-score = 6.15, and for EWI it was
0.20, z-score = 4.15. Thus, both dependent measures of
sustainability urbanization had less than 1% likelihood,
and their spatial distributions were the result of random
chance. The LISA index, Anselin Moran’s I-test, displayed
clustering of HWI and EWI across the 33 European coun-
tries (Figure 3). Improved human welfare was centered
around Denmark, and decreased levels clump Albania,
Bosnia and Herzegovina, Bulgaria, Macedonia, Romania,
and Turkey together. Improved ecosystem integrity
bundled Norway, Finland, and Sweden together, while
diminished condition bunched Belgium, France,
Luxembourg, Netherlands, and Spain.

4.2. Global and local regression

The multimodel selection framework produced seven a
priori models: three urban landscape models for predicting
HWI across 33 European country landscapes, and four
models for EWI (Table 2). Four variables were used in
three OLS regression models to explain between 43% and
59% of HWI variation. Four variables were used in four
OLS regression models to explain between 13% and 46%
of EWI variation. VIF magnitudes ranged between 1.00
and 2.30 for all multiple regression models, thus the multi-
collinearity problem among independent variables was
virtually nonexistent. The seven distinct models allow for
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a separation of independent variables that are correlated to
socioeconomic or environmental conditions of
sustainability.

The regression models clearly indicate that population
density and configuration of UMZs are good predictors of
sustainability at a macroscale. When combined with urban
configuration metrics, population density was found nega-
tively associated with both human and ecological systems
(Table 2). The regression results also revealed that urban
landscape measures influence socioeconomic welfare and
environmental quality oppositely. The strongest individual
predictor for describing HWI was patch cohesion index
(COHESION, R2 = 0.43, P < 0.001), and for EWI it was
percent UMZ of country (Percent Urban, R2 = 0.32,
P < 0.001, Figure 4). A statistically significant linear
relationship was also found between EWI and
COHESION at the country scale (R2 = 0.13, P = 0.039).

Akin to other urban-ecological integrity studies at more
local scales (i.e. Shaker & Ehlinger 2014), the bivariate
relationship between percent UMZ and EWI was negative
logarithmic. These regression relationships allow for
threshold of effect interpretation of landscape patterning,
which remains largely absent from the sustainability
science and landscape planning literature. Using a two-
sided inverse prediction (0.95 confidence level),
COHESION scores greater than 90.7 (86.9–92.3) provide
Human Wellbeing conditions of ‘medium’ or better.
Ecological Wellbeing approaches ‘poor’ status as a coun-
try’s percentage of UMZs surpasses 1.9 (upper 95%).
Further, conditions of Ecological Wellbeing decrease to
the rank of ‘medium’ or worse as COHESION values
exceed 87.7 (upper 95%).

The seven statistical models varied in their indication
concerning which urban landscape variable most affected

Figure 3. Local Anselin Moran’s I-test index of spatial association illustrating clustering of Human Wellbeing Index (HWI) and
Ecosystem Wellbeing Index (EWI) across the study area. Spatial autocorrelation determined using queen contiguity.

Table 2. Relationships between urbanization predictors and Wellbeing indices explored by OLS regression.

OLS
OLS AICc OLS

No Dependent Std. beta coefficients regression R2 value model sig.

1 HWI +0.78 × (COHESION***) –0.56 × (Pop. Density**) +0.56 × (PD**) 0.59 248.37 ***
2 HWI +0.63 × (COHESION***) +0.25 × (PROX_CV*) 0.47 254.84 ***
3 HWI +0.65 × (COHESION***) 0.43 254.15 ***

4 EWI –0.56 × (Pop. Density***) –0.28 × (COHESION*) 0.46 216.17 ***
5 EWI –0.50 × (PD**) –0.42 × (COHESION**) 0.38 220.62 ***
6 EWI –0.57 × (Percent Urban***) 0.32 220.93 ***
7 EWI –0.36 × (COHESION*) 0.13 229.26 *

Notes: *P < 0.05, **P < 0.01, ***P < 0.001.
Symbols enclosed in parentheses designate individual P-values.
HWI, Human Wellbeing Index; EWI, Ecosystem Wellbeing Index; OLS, ordinary least squares; COHESION, patch cohesion index; PD, patch density;
PROX_CV, proximity index coefficient of variation.
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sustainability conditions (Table 2). Of the three models used
to predict HWI, COHESION remained the strongest influen-
cing urban landscape metric individually or when combined;
EWI had no predictor that was consistently the strongest
across four models used. COHESION, however, was present
in three of the four regression models predicting EWI.
Specifically, the three independent variables, Population den-
sity (Pop. Density), COHESION, and patch density (PD),
were used to predict both HWI and EWI across 33
European country landscapes. The three urban predictors
combined to make one OLS multiple regression model to
explain HWI. Defining that model, COHESION (std.
coeff. = 0.78, P < 0.001) and PD (std. coeff. = 0.56,
P = 0.005) positively impacted HWI, while Pop. Density
(std. coeff. = −0.56, P = 0.004) had a negative effect
(Table 2). The three independent variables were used in two
OLS multiple regression models to explain EWI. The first
model integrated Pop. Density (std. coeff. = −0.56, P < 0.001)
and COHESION (std. coeff. = −0.28, P = 0.034), and both
were negatively associated to EWI. The second model incor-
porated PD (std. coeff. = −0.48, P = 0.002) and COHESION
(std. coeff. = −0.40, P = 0.009), and both again negatively
influenced EWI (Table 2).

The CAR analysis corroborated statistical directional-
ity established using OLS regression for predicting
Wellbeing condition across the 33 European country land-
scapes. That said, CAR analysis did reveal small statistical
changes across the seven distinct models for predicting
HWI and EWI. Three CAR models explained between
42% and 54% of HWI variation, and four CAR models

explained between 13% and 43% of the variation of EWI
(Table 3). The strongest individual CAR predictor for
understanding HWI and EWI remained COHESION
(R2 = 0.42, P < 0.001) and Percent Urban (R2 = 0.30,
P < 0.001), respectively. A statistically significant bivari-
ate CAR relationship was also found between EWI and
COHESION at the country scale (R2 = 0.13, P = 0.044).
Of the three CAR models used to predict HWI,
COHESION remained the strongest influencing urban
landscape metric individually or when combined, and
EWI had no CAR predictor that was consistently the
strongest across the four models (Table 3).

The three independent variables (Pop. Density,
COHESION, PD) combined to make one CAR multiple
regression model to predict HWI. The strongest urban
landscape model predicting HWI was COHESION (std.
coeff. = 0.71, P < 0.001) and PD (std. coeff. = 0.66,
P < 0.001) positively associated, and Pop. Density (std.
coeff. = −0.57, P = 0.008) negatively (Table 3). The three
aforementioned independent variables were used in two
CAR multiple regression models to explain EWI. The first
model integrated Pop. Density (std. coeff. = −0.60,
P < 0.001) and marginally significant COHESION (std.
coeff. = −0.27, P = 0.052), and both negatively influenced
EWI. The second model incorporated PD (std.
coeff. = −0.51, P = 0.001) and COHESION (std.
coeff. = −0.41, P = 0.004), and both again negatively
impacted EWI (Table 3). Testing residual spatial depen-
dence of each CAR model, using global Moran’s I statis-
tic, revealed no spatial errors. Although residual

Figure 4. Bivariate scatter plot between Human Wellbeing Index (HWI) and patch cohesion index (COHESION). Bivariate scatter plots
between Ecosystem Wellbeing Index (EWI) and COHESION, and percent urban morphological zone (Percent Urban).
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distributions varied from normal to skewed, spatial corre-
lograms of the seven distinct CAR models suggest a
reduction of errors across space. Finally, when comparing
OLS and CAR results model, one had a shift in covariate
rank based on standardized beta coefficients; all other
models remained consistent.

4.3. Urban landscape change

The 31 countries represent a gradient of urbanization ran-
ging from 0.22% to 22.9% UMZ in 2006. The European
nations included in the change analysis have fluctuating
levels of urbanization, however collectively the region
continued to see noteworthy population growth and a
considerable amount of UMZ expansion between 2000
and 2006. For the entire study area, more than 14 million
people were added during the six years. Population density
increased from 112.19 in 2000 to 114.65 in 2006 at an
average rate of 0.4% per year (Table 4). Land cover also
transformed substantially for the study area during the
time period. Specifically, over one million new hectares
(11,023 Km2) of urban land was generated during the
period, with percent UMZ increasing from 4.4% in 2000
to 4.8% in 2006 at an average rate of 1.2% per year.

The spatial and temporal patterns of population and
landscape composition at the country scale allowed for
identification of fast and slow urbanizing nations that
could not be detected at the continental level. Germany
had the greatest population in 2006, followed by Turkey,
and then France; however greatest population density
was observed in Netherlands (465 persons/Km2), then
Belgium (341), and Germany (231). Iceland had the few-
est people in 2006, preceded by Luxembourg and
Cyprus; however lowest population density was observed
in Iceland (3 persons/Km2), preceded by Norway (15),
and Finland (16). Twenty-two of the 31 countries had
positive population growth, with the greatest increase in
population density observed in Albania (2.4%), preceded
by Turkey (1.8%), and then Iceland (1.7%). Nine of the
31 countries had negative population growth, with the
greatest decrease in population density observed in
Bulgaria (−1.2%), preceded by Latvia (−1%), and then
Romania (−1%). For both dates, Germany maintained the
greatest total area of UMZ with over 30,300 Km2 in
2006, while Iceland preserved the least amount with
less than 230 Km2. Belgium had the greatest percent of
UMZ in 2006 with 22.9%, followed by the Netherlands
(12.9%) and Luxembourg (9.7%). Iceland recorded the
lowest percent of UMZ in 2006 with 0.22%, preceded by
Norway (0.7%) and Sweden (1.3%). All but one country
had positive growth of percent UMZ, with the greatest
increase observed in Albania (19.9%), then Portugal
(5%) and Poland (3.8%). Slovakia was the only country
with negative UMZ land cover change with −0.4%, while
Slovenia (0.1%) and Latvia (0.1%) had the lowest
amount of positive growth.

Landscape pattern metrics helped to highlight trends in
urbanization over the six-year period, which could not be
assessed with composition measures. The irregularity of
development across Europe is reflected in patch config-
uration metrics as measured by PD and COHESION for
UMZ which ranged between 0.001 and 0.074 and 92.91
and 99.44, respectively, in 2006. Results from the change
analysis revealed that the number of new urban areas was
the more important fragmentation characteristic of

Table 3. Relationships between urbanization predictors and Wellbeing indices explored by CAR regression.

CAR
CAR AICc CAR

No. Dependent Std. beta coefficients regression R2 value model sig.

1 HWI +0.71 × (COHESION***) +0.66 × (PD***) –0.57 × (Pop. Density**) 0.54 256.89 ***
2 HWI +0.51 × (COHESION***) +0.24 × (PROX_CV) 0.43 260.73 ***
3 HWI +0.56 × (COHESION***) 0.42 258.39 ***

4 EWI –0.60 × (Pop. Density***) –0.27 × (COHESION) 0.43 221.94 ***
5 EWI –0.51 × (PD**) –0.41 × (COHESION**) 0.36 226.74 ***
6 EWI –0.56 × (Percent Urban***) 0.30 225.72 ***
7 EWI –0.36 × (COHESION*) 0.13 232.85 *

Notes: *P < 0.05; **P < 0.01; ***P < 0.001.
Symbols enclosed in parentheses designate individual P-values.
CAR R2: represents total explained variance (predictor + space).
HWI, Human Wellbeing Index; EWI, Ecosystem Wellbeing Index; CAR, conditional autoregression; COHESION, patch cohesion index; PD, patch
density; PROX_CV, proximity index coefficient of variation.

Table 4. Changes in urbanization measures between 2000 and
2006 for 31 European countries.

Study region
(n = 31 countries)

Parameters 2000 2006 Annual rate (%)*

PLAND (%) 4.430 4.760 1.242
PD 0.026 0.028 1.014
COHESION 95.596 95.844 0.043
Population density

(persons/km2)
112.192 114.646 0.365

Note: *Equation for calculation: R =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=R1 � 1n 1

p
, where R is the

change rate; R1 is the value at start year; R2 is the value at end year; n
represents the difference of years between the two dates.

International Journal of Sustainable Development & World Ecology 9

D
ow

nl
oa

de
d 

by
 [

R
ye

rs
on

 U
ni

ve
rs

ity
] 

at
 0

8:
04

 0
8 

Ju
ne

 2
01

5 



European urbanization, with PD increasing at an annual
rate of 1% (Table 4). Additionally, the results reveal a
small but rising trend in COHESION with an average
rate of 0.04% per year. The overall increasing level of
COHESION suggests that urban areas across Europe
have become more physically connected in recent years.

For 2006, Luxemburg logged the greatest PD value
with 0.074, followed by Czech Republic (0.066) and
Germany (0.053). Iceland recorded the lowest PD score
with 0.001, preceded by Norway (0.004) and Sweden
(0.005). Twenty-three of the 31 countries had positive
PD growth, with the greatest increase observed in
Albania (6.6%), then Portugal (4.1%) and Poland (3.7%).
Eight of the 31 countries had negative PD scores, with the
greatest decrease observed in Latvia (−1%), preceded by
Slovakia (−0.8%), and then Cyprus (−0.6%). In 2006,
Belgium recorded the greatest COHESION score with
99.44, followed by Netherlands (97.69) and Italy (97.31).
Slovakia logged the lowest COHESION score with 92.91,
preceded by Bulgaria (93.27) and Czech Republic (93.68).
Twenty-six of the 31 countries had positive COHESION
growth, with the greatest increase observed in the
Netherlands (0.08%), then Spain (0.06%) and Lithuania
(0.05%). Five of the 31 countries had negative
COHESION scores, with the greatest decrease observed
in Belgium (−0.017%), preceded by Portugal (−0.017%),
then Slovenia (−0.010%).

5. Discussion

5.1. Corridors or fragmentation

Macroscale sustainable development is likely best assessed
using country landscapes, as progress can be directly
linked to a government’s policies and its inhabitants’
practice. This study provided specific thresholds of urba-
nization effect on sustainability condition, which remains
an unrepresented area of research and a topic needing
further support in policy and planning. Understanding
the effects of landscape change on ecosystems is critical
for preserving or restoring healthy, functional, and intact
ecosystems. Human population growth, and migration to
urban areas, has lead to fragmentation and overall losses of
habitat due to conversion of natural landscapes for anthro-
pogenic purposes (Riitters et al. 2000; FAO 2006). The
first null hypothesis stated that no significant relationship
exists between urban landscape form and population char-
acteristics and HWI across Europe. Across the three
regression techniques used, the urban connectively mea-
sure patch cohesion index (COHESION) remained the
strongest predictor for explaining the variability of HWI.
This relationship signifies the importance of anthropogenic
corridors for improving conditions of human well-being.
Since statistical relationships were found between UMZ
configuration metrics and population density with HWI,
the first null hypothesis is rejected.

The second null hypothesis stated that no significant
relationship exists between urban landscape form and

population dynamics and EWI across Europe. Across the
three regression techniques used, the urban composition
measure percent urban and the connectively measure
patch cohesion index (COHESION) were strongest at
explaining the variability of EWI. Most analyses of
coupled urban-ecological systems connect changes in the
ecological systems with meek aggregated metrics of urba-
nization (e.g., percent urban land cover, population den-
sity); however, these measures only offer crude predictions
of conditions and a limited suite of planning or manage-
ment responses (Alberti 2008). However, the COHESION
is a configuration measurement of physical connectedness,
and provides to a knowledge base for sustainable urban
form. A key finding from this study is that urban patterns
are simultaneously improving socioeconomic systems
while degrading our life-supporting ecosystems. Rands
et al. (2010) called attention to this global phenomenon,
and said that numerous thriving nations have metabolized
natural resources in the past to advance their present
status, and developing countries are in the process of
exploiting ecological well-being to improve their socio-
economic circumstance. Since statistical relationships
were found between UMZ configuration metrics and
population density with EWI, the second null hypothesis
is also rejected.

5.2. An urbanizing global paradox

‘A finite world can support only a finite population; there-
fore, population growth must eventually equal zero’
(Harding 1968, 1243). Across habitable continents, it is
likely that Europe will be the first to reach this milestone.
Unfortunately, it should be realized that the impacts of
urbanization will be faced by the next few generations
(under foreseeable technology), even after population
growth has stabilized. Harding’s (1968) tragedy of the
commons focused on both human overpopulation and
pollution, and his main thesis was that common resources
would always be overexploited when utilized by selfish
individuals. Some researchers now argue that environmen-
tal degradation is not due to overpopulation as much as it
is direct and indirect overconsumption of resources and
pollution by the rich (Weinzettel et al. 2013). Specifically,
an increased demand for food, fiber, fuels, and construc-
tion materials have metabolized Earth’s natural resources
causing a projected 70% increase in global footprint when
projecting from 2004 to 2050 (Weinzettel et al. 2013). The
results of the regression analyses within this article con-
sistently showed that population density was negatively
associated to both HWI and EWI, thus confirming the
importance of stabilizing population growth. However,
once population growth approaches zero, it can be pre-
sumed that humanity’s addiction to material goods and
consumption standards will remain a problem into the
next century.

The third and final null hypothesis stated that recent
European urbanization trends do not move us closer to
global sustainability. The urban landscape change analysis
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provided results that UMZ composition and configuration
increased from 2000 to 2006 for the study region. The
urban landscape change analysis also revealed that popu-
lation density intensified during that same time period, but
at a much lower rate. Landscape metrics helped to high-
light trends in European urbanization over the six-year
transition. The low population growth, in comparison to
increases in urban land cover composition and configura-
tion, suggests that the built density of urban areas may be
decreasing. Implying that urban growth and sprawl legis-
lation between 2000 and 2006 was ineffective across most
of the countries in this study. Although a positive relation-
ship was found between landscape configuration measures
and HWI, the inverse was established between those
metrics and EWI. The overall findings of this study
uncover that urban patterns across Europe have discon-
nected socioeconomic welfare from life-supporting eco-
system services; furthermore, the urbanization trend
between 2000 and 2006 suggests these findings will con-
tinue into the future. Thus, the third and final hypothesis is
accepted because the recent European urbanization trends
assessed in this article do not move us closer to global
sustainability.

The global urbanization trend is closely related to
ecological well-being and to profound fluctuations of
socioeconomic conditions (UNMP 2004; Crane & Kinzig
2005). Besides the environmental ramifications of urbani-
zation, questions remain concerning how changes to socio-
economic well-being will impact future relationships
between humans and their environment (NRC 1999;
Kates 2001; Clark & Dickson 2003). There remains an
obligation to stabilize human population growth while
providing an increase in living standards, simultaneously
doing so within the constraints of Earth’s environmental
limits (NRC 1999; Kates 2001; Parris & Kates 2003).
Close to one billion people currently live in ‘extreme
economic poverty’ (less than 1 US dollar/day), and lack
access to life-supporting ecosystem services to meet essen-
tial needs (World Bank 2008). Although resolving social
injustices should remain a focal point for sustainability
policy-makers, this analysis suggests that life-supporting
ecosystems across Europe are significantly more compro-
mised than socioeconomic welfare. Within sustainability
science, policy-making, and applied practice, this dilemma
is often viewed as a ‘chicken or egg’ scenario, which it is
definitely not. Although a few countries have registered
environmental management and policy successes, the rate
of biodiversity loss at the global scale does not seem to be
decelerating (Butchart et al. 2010). Shaker and Zubalsky
(2015, 10) signified the importance of this problem by
asking: ‘at what point does the metabolization and destruc-
tion of life-supporting ecosystems start to hinder human-
ity’s social equity and economic welfare?’ Indeed, this
question should remain central to sustainable development
research, as human behaviors should eventually match
Earth’s environmental limits and available ecosystem ser-
vices (Ehrlich & Ehrlich 1996; Wackernagel & Rees 1996)
to avoid social chaos (Ruckelshaus 1989). In conclusion,

results from studies like this one help to improve manage-
ment of Earth’s coupled human–environmental systems
and humanity’s quest towards sustainability.
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