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1. INTRODUCTION 
 

Numerous studies have demonstrated the importance of watershed scale research for 
improving aquatic and water quality over other management scales (e.g., reach, riparian zone) 
(Wang et al., 2003; King et al., 2005; Potter et al., 2005; Wang et al., 2006; Alberti et al., 
2007).  Starting in the mid 1970s, the watershed management paradigm changed the way 
aquatic ecologists look at the landscape.  “In every respect, the valley rules the stream” (Hynes, 
1975).  “Rivers and streams serve as a continent’s circulatory system, and the study of those 
rivers, like the study of blood, can diagnose the health not only of the rivers themselves but of 
their landscapes” (Sioli, 1975).  

The current integrity of the planet is being stressed beyond its biological capacity, 
and understanding human created landscapes is more important now than ever.  Changes in 
land cover, through the appropriation of natural landscapes to provide for human needs, has 
been found to be one of the most pervasive alterations to native ecosystems resulting from 
human activity (Foley et al., 2005; Liu et al., 2007).  Landscape change influences natural 
systems by fragmenting landscape patches, isolating habitats, abridging ecosystem dynamics, 
introducing exotic species, controlling and modifying disturbances, escalating climate change, 
and disrupting energy flow and nutrient cycling (Picket et al., 2001; Alberti, 2005; Foley et al., 
2005; Liu et al., 2007; Alberti, 2008; Milly et al., 2008).  Albeit, terrestrial waters are often the 
ecosystems most affected by those stressors associated with landscape change (Foley et al., 
2005; Novotny et al., 2005; Liu et al., 2007; Milly et al., 2008). 

Access and management of water resources is now considered a prerequisite for 
human development of watershed management (Baron et al., 2002; Gleick, 2003).  To support 
this, many nations have adopted laws to protect or improve the integrity of hydrologic systems 
(Karr, 2006).  A reoccurring theme throughout these regulations is to restore and maintain 
biological integrity of their respected waters.  Monitoring programs for assessing human 
impacts on aquatic and water quality have existed for decades.  Specifically, fish indicators of 
biological integrity have gained popularity for quantifying the impact of human activities on 
the biota and are in practice on six of the seven continents throughout the world (Roset et al., 
2007).  A variety of measuring techniques have been applied to fish as indicators of biological 
integrity; however, the Index of Biotic Integrity (IBI) has developed into the applied method of 
choice. The IBI (Karr, 1981), has been widely applied to fish assemblage data for assessing the 
environmental quality of aquatic habitats (Roset et al., 2007).  Further, the Fish Index of Biotic 
Integrity (F-IBI) is welcomed as a robust method for investigating landscape-aquatic 
interactions (Karr and Yoder, 2004; Novotny et al., 2005), and has been found to help diagnose 
causes of ecological impacts and suggest appropriate management actions (Karr and Chu, 
1999).  

Previous studies between landscape-aquatic relationships have typically correlated 
changes in ecological integrity with simple aggregates of urbanization (e.g., percent urban) 
(Alberti et al., 2007); albeit, these relationships are often found to be non-linear (Novotny et 
al., 2005), and cannot account for a large portion of the variability in aquatic ecological 
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integrity.  A preliminary investigating using data from this study supports these findings 
(P=0.0059) (Figure 1).  In recent studies, research has implied the importance of incorporating 
configuration metrics into landscape-aquatic condition research (e.g., Alberti et al., 2007; 
Shandas and Alberti, 2009), but few have addressed the non-linear relationships typically found 
between landscapes and aquatic ecosystems.  In this paper, using the context of a landscape-
watershed ecological condition study in Southern Wisconsin, land cover (composition) and 
urban patterns (configuration) relationships were explored.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 1 
NON-LINEAR SCATTER PLOT BETWEEN WBI (AVERAGE F-IBI) AND NATURAL 

LOG OF PERCENT BUILT/URBAN DEVELOPMENT AT THE HUC-10 SCALE 
 
 

2. APPROACH 
 

 For this study, it is hypothesized that urban patterns, and their associated uses, are the 
greatest stressors on aquatic ecological integrity in Southern Wisconsin at the watershed scale.  
At the watershed level, there remains uncertainty about 1) spatial and scale dependencies of 
ecological condition indicators and which hydrological unit scale is most appropriate for data 
aggregation; 2) which quantitative methods are best for investigating landscape-aquatic 
condition relationships; and 3) how the urban land mosaic affects hydrological ecosystems.  A 
Watershed Biotic Integrity (WBI) score was created for two aggregation scales (subwatershed 
and watershed) by averaging F-IBI scores from various dated sample sites throughout a 
watershed.  By averaging F-IBI scores to create a WBI, errors associated with spatial 
autocorrelation of biotic processes (e.g., dispersal or species interactions), spatial dependence 
from abiotic processes (e.g., deterministic structures such as canopy cover), and temporal 
variability are reduced.  In the following, Exploratory Spatial Data Analysis (ESDA) was used 
to investigate watershed management scales based on spatial structure of WBI.  Upon selection 
of the more appropriate landscape management scale, Geographically Weighted Regression 
(GWR), and Artificial Neural Networks (ANN) were used to examine relationships between- 
landscape composition and urban land configuration and- WBI as an indicator of watershed 
ecological condition. 
 
2.1 EXPLORATORY SPATIAL DATA ANALYSIS 
 
 ESDA was performed on the spatial arrangement of the response variable (WBI) at 
both the subwatershed and watershed scale.  ESDA is typically employed to examine the 
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spatial patterns of areal data, such as watersheds or neighborhoods, and has been applied in 
many fields including crime analysis, urban systems, public health studies, and transportation 
planning (O’Sullivan and Unwin, 2003; Ackerman and Murray, 2004; Myint, 2008; Rybarczyk 
and Wu, 2009).  ESDA can be classified into two groups: global and local statistics.  Global 
spatial statistics attempt to examine the global patterns of the spatial data, while local spatial 
statistics highlight local variations.  For this study, a common ESDA technique, global spatial 
autocorrelation analysis, was applied. Spatial autocorrelation is the lack of independence 
between pairs of observation at given distances in time and space (Legendre, 1993). 
 
2.2 GEOGRAPHICALLY WEIGHTED REGRESSION 
 

The first law of geography states that things that are near are more similar 
(autocorrelated) than things that are farther apart (Tobler, 1970; Fortin and Dale, 2005).  When 
investigating landscape-aquatic conditions it is essential to understand that natural systems are 
influenced by many different processes over space.  In environmental research, spatial 
autocorrelation has been found to be problematic for classical statistical tests like standard least 
squares regression for violating the assumption of independently distributed errors for 
geographically referenced observations (Legendre, 1993).  Further, standard errors are usually 
undervalued when positive autocorrelation is present and Type I errors may be strongly 
exaggerated (Legendre, 1993), especially in association with changes in spatial scale (Hawkins 
et al., 2007).  In most cases, the presence of spatial autocorrelation is seen as a significant 
shortcoming for hypothesis testing and prediction (Lennon, 2000; Dormann, 2007).  To date, 
there remain few methods for dealing with non-stationarity across an entire region of study 
(Osborne et al., 2007). 

In this analysis, GWR was implemented for investigating the relationships between 
landscape factors and WBI. GWR is a technique, developed as a refinement to normal 
regression methods, to explicitly deal with spatial non-stationarity of empirical relationships 
(Fotheringham et al., 2004).  Using a Bayesian-modified linear regression technique, GWR 
utilizes a distance decay weighting philosophy (LeSage, 1999).  The assumption with 
traditional statistics is that the relationship under study is spatially constant, and thus, the 
estimated parameters remain constant over space; however, in environmental research, most 
relationships vary over space.  GWR assesses local influences, allowing for a spatial shift in 
parameters and a more appropriate fit (Wang et al., 2005).  Although the technique does not 
allow for extrapolation beyond the region in which the model was established, GWR may 
provide more suitable and accurate results for descriptive and predictive purposes (Foody, 
2003). 
 
2.3 ARTIFICIAL NEURAL NETWORKS 
 

Many factors can influence aquatic ecosystems; many factors of which have yet to be 
quantified accurately.  Recently, ANN has gained popularity in the natural sciences to help 
describe complex and non-linear relationships between environmental processes (e.g., May et 
al., 2008; Salazar-Ruiz et al., 2008; Wieland and Mirschel, 2008).  ANN is a relatively new 
data-driven computational technique that is inspired by the neurobiology of the brain. Its 
methodology is designed after human and animal brain function of study, memory, reasoning, 
and induction (Beale and Jackson, 1998; Moore, 2000).  According to Fischer and Abrahart 
(2000), ANN offer solutions by learning and adapting to information that is difficult to 
understand, incomplete, noisy, and fuzzy.  ANN ability to learn and adapt is considered one of 
its most important characteristics (Beale and Jackson, 1998).  ANN has been found to be 
particularly important in studies with data shortcoming (Openshaw, 1998; Fischer and 
Abrahart, 2000).  In general, ANN operates by creating connections between processing 
elements (analogous to neurons in the brain).  Each processing element takes many input 
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signals, then, based on an internal weighting system, produce output signals that are sent as 
inputs to the other processing elements (Porwal et al., 2003). 

The network weights are modified in a training process through a number of learning 
algorithms based on back propagation learning (Brown et al., 2003).  During the learning 
process, it is imperative that the training and validation sets are representative of the same 
population.  Optimally, two independent databases would be used (Lek and Gue´gan, 1999), 
one for training and one for validating the model (e.g., Obach et al., 2001). When limited data 
are available it might be necessary to split the available data into a training set and a validation 
set.  A frequently used procedure is the k-fold cross-validation method (e.g, D’heygere et al., 
2006).  In this case, the dataset is equally divided into k parts and fit repeatedly k times on 
overlapping (k-1)/k proportions of the data.  The variance of the performance results gives an 
indication of the robustness of the a priori model(s).  There remains limited knowledge on the 
optimal k-value; therefore it is best to try out a set of combinations of k between 3 and 10.  By 
doing so, a balance between robustness and reliability will be determined for the developed 
models.  

A typical ANN consists of three layers: input processing elements, hidden layers, and 
output.  The number of input processing elements (neurons) is equal to the data variables used.  
The number of hidden layers depends on the architecture of the network and is usually 
determined by trial-and-error (Samanta et al., 2006).  In recent landscape studies, progress has 
been made on ANN architecture, circumventing vagueness (see Pijanowski et al., 2005; Lakes 
et al., 2009).  ANN cannot incorporate spatial information into an analysis, so when conducting 
a spatial analysis it is important to couple ANN with a geographic information system (GIS).  
This method has been found to be a successful technique for processing and analyzing spatial 
information (Hosseinali and Alesheikh, 2008).  

Recently, ANN has been accepted as an effective alternative tool for modeling 
complex and non-linear relationships in hydrological systems (e.g., Wu et al., 2009).  
Applications of ANN to various aspects of the hydrological system have provided promising 
results. Those studies include landslide analysis (Pavel et al., 2008), rainfall-runoff process 
(Chiang et al., 2007), sediment concentration estimation (Nagy et al., 2002), and groundwater 
inrush (Wu et al., 2009).  However, applications of ANN for investigating relationships 
between land cover (composition) and land patterning (configuration) and aquatic ecological 
conditions are still limited. 
 
 

3. STUDY AREA AND DATA 
 

 This study focuses its empirical analysis between- land cover and urban land 
patterns- and WBI within Southern Wisconsin, USA (Figure 2).  Population growth has had a 
major influence on land use and land cover change, resulting in a variety of landscape patterns 
throughout the study area.  Primarily, the mixture of landscape patterning is a result of 
suburban and exurban growth metabolizing and reshaping agricultural lands surrounding the 
two largest cities in the state: Madison and Milwaukee. 

The nested study area subwatershed (HUC-12) and watersheds (HUC-10) were 
selected based on 427 fish sample sites, and an adjacent sampling of basins on an urban to rural 
to urban gradient.  The fish sample sites used in this analysis are managed by the Wisconsin 
Department of Natural Resources (WDNR).  Fish data collected over a span of four years 
(2001-2005) were used to calculate the F-IBI for each sample site; albeit, all F-IBI data and 
scores were collected and calculated by the WDNR.  Due to geographical affects on speciation, 
the F-IBI employed is based off of John Lyons (1992) fish community research for the state of 
Wisconsin.  Following the Wisconsin method for wadeable streams, fish samples are collected 
from a segment of stream with length equal to thirty-five times the mean stream width.  This 
method is designed to, and usually does, include different habitats (Lyons, 1992).  The F-IBI 
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for Wisconsin is calculated for an individual sample from each stream segment and calibrated 
by comparing the observed values of each metric with values expected in comparable streams 
of high environmental quality (Lyons, 1992).  The Wisconsin F-IBI scales between 0 and 100, 
with increasing scores equaling higher environmental quality.  For the 427 fish sample sites 
used, F-IBI scores ranged from 10 (very poor) to 50 (good).  As previously stated, F-IBI scores 
were averaged by watershed to created WBI- an overall rating of watershed ecological 
condition. 

 

 
FIGURE 2 

MAP OF STUDY AREA BASIN SCALES AND URBAN LAND CONFIGURATION 
 
The study area is comprised of 136 HUC-12 subwatersheds and 49 HUC-10 

watersheds with varying sizes and shapes.  HUC is the acronym for Hydrologic Unit Code 
(HUC) and every hydrologic unit is uniquely identified through its code (2 to 12 digits) based 
on its scale within the hydrological system.  Referred to as 5th level watersheds, the HUC-10 
watersheds used in our analysis have an average size of 359 km2 with a total study area of 
17,600 km2.  The HUC-10 watersheds chosen in this analysis were published in shapefile 
format by the WDNR in 2002.  These data were digitized by interpreting USGS 7.5-minute 
(1:24,000) topographic and hydrologic paper maps.  Referred to as the 6th level watersheds, the 
HUC-12 subwatersheds used have an average size of 73 km2 with a total study area of 9,934 
km2. The HUC-12 subwatersheds chosen in this analysis were published in shapefile format by 
the USDA Forest Service in 2007.  These data were digitized by interpreting USGS 7.5-minute 
(1:24,000) topographic and hydrologic paper maps, (1:24,000) elevation Digital Raster 
Graphics (DRGs), and (1:24,000) digital orthophotos.  The nested 136 subwatersheds and 49 
watersheds should be considered as individual landscapes. 

The land cover data used in this analysis was published by the WDNR in 1998 as part 
of a larger project for the Upper Midwest Gap Analysis Program (UMGAP) Image Processing 
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Protocol.  The land cover data, entitled WISCLAND, is a raster representation of vegetation 
and land cover for the entire state of Wisconsin that was acquired from the national Multi-
Resolution Land Characteristics Consortium (MRLC).  The WISCLAND data was created 
using dual-data Landsat Thematic Mapper (TM) imagery data primarily from 1992. The 
original pixel size of the TM source data is 30 meters; however, excluding urban areas, patches 
were generalized to areas no smaller than four contiguous pixels (roughly 0.4 hectares).  After 
processing, the data have a minimum mapping unit of 5 acres, delineating land cover features 
roughly 1.6 hectares in the data.  WISCLAND was designed to be used between scales 
1:40,000 and 1:500,000 for a wide variety of resource management and planning applications.  
Its land cover data is classified into a three level hierarchy modeled after Anderson et al. (1976) 
land use and land cover classification system with level one being most broad (9 classes) to 
level three being most detailed (30 classes).  Focusing on major land cover composition and 
urban land patterning, and due to misclassification error being reduced at broader scales, level 
one was employed for this analysis. 

 
 

4. METHOD 
 

Before studying the landscape-ecological condition, an ideal basin scale needed to be 
selected.  Employing ESRI’s ArcMap 9.3.1 Spatial Statistics toolbox, global spatial statistic 
Getis-Ord General G was used to calculate the spatial autocorrelation of WBI across the entire 
study area at both the subwatershed and watershed scale.  At the HUC-12 subwatershed scale, 
the Getis-Ord General G index reported 2.47 z-score standard deviation; albeit revealing that 
WBI has a less than 5 % chance of random spatial distribution at this basin scale.  At the HUC-
10 watershed scale, the Getis-Ord General G index reported WBI to be spatially random with a 
0.71 z-score standard deviation.  Due to WBI spatial dependencies at the HUC-12 
subwatershed scale, the subsequent methods were conducted at the HUC-10 watershed scale. 

Landscape metrics are often used in predictor analyses of ecological processes.  In 
this analysis, major land cover (composition) and agricultural land patterning (configuration) 
were quantified using landscape ecology metrics developed for quantifying the spatial 
arrangement of land cover and land use (McGarigal and Marks, 1995; Turner et al., 2001; 
McGarigal et al., 2002).  FRAGSTATS version 3.3 (McGarigal et al., 2002), a free and 
publicly accessible software, was used for computing agricultural land pattern metrics for each 
watershed (see Hargis et al., 1998; Leitao et al., 2006).  As there is no apparent causal ordering 
in space as there is in time, there remains no minimum set of landscape metrics for capturing 
the majority of landscape structure (Gustafson, 1998; Fortin et al., 2003).  Further, landscape 
metrics are highly sensitive to scale; albeit, measurement changes coming primarily from 
differences in data resolution and extent of study area (Turner et al., 2001; Wu et al., 2002).  
Preserving 30m resolution, four major land cover composition variables and 55 landscape 
urban class metrics were computed for each of the 49 watershed used in the subsequent 
statistical analysis. 

A method is presented hereafter to assess watershed ecological condition through the 
combination of traditional and spatial statistics.  Specifically, multivariate statistical techniques, 
GWR, and ANN were used to investigate relationships between 1) landscape composition and 
urban land configuration and 2) WBI (averaged F-IBI) at the watershed scale.  The 
relationships between landscape disturbance factors and WBI were tested using a three-step 
process.  To meet the assumptions of normality for all variables of parametric tests, two types 
of transformation were used: negative arcsine (proportion data) and log10 (length/score data).  
Variables comprising the final dataset were standardized using a z-transformation to set all 
parameters to a mean of 0 and variance of 1.  Statistical software packages implemented in this 
analysis were SYSTAT 12, JMP version 8, and the freeware Spatial Analysis in Macroecology 
(SAM) version 3.1. 
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  First, using Principle Components Analysis (PCA) and Robust Pearson correlation, 
urban class metrics were reduced.  Metrics with strongest loadings that exhibited different 
patterns of orthogonal axes were selected; those metrics were then reduced further by Robust 
Pearson correlation to remove any metrics that exhibited a high degree of multicollinearity (r > 
0.8).  Eight urban class metrics remained to be used in the following statistical step.  Second, 
using GWR as an exploratory tool, relationships between WBI and four major land cover 
composition metrics and eight remaining urban class metrics were measured.  GWR was 
undertaken using a Bi-Square spatial weighting with optimization for minimizing corrected 
Akaike Information Criterion (AICc).  For variable evaluation, AICc was applied as a preferred 
measure of model fit (see Akaike, 1978; Fotheringham et al., 2002).  In general, the lower the 
AICc, the closer the approximation of the model is to reality.  It should be noted that a ‘serious’ 
difference between two models is when the difference in AICc values differs by at least three 
(Fotheringham et al., 2002).  Third, using k-fold cross-validation ANN, non-linear relationships 
were explored between urban class metrics and WBI.  A 3-layer ANN model architecture of 
neurons- comprising of input layers, hidden layers, and one output later was selected (Figure 
3).  A set of a priori ANN models, based on the statistically significant urban class metrics, 
were developed.  Ten cross-validation groups were selected for k-fold cross-validation for all 
models.  As suggested by Pijanowski et al. (2005), the same number of hidden layers and input 
layers were used.  Root mean squared error (RMSE) was used for measuring network 
performance and model comparison.  Due to flexibility in ANN methods, only statistically 
significant urban class metrics from the GWR analysis were used in apriori ANN model 
development. 

  

 
 

FIGURE 3 
STRUCTURE OF URBAN CONFIGURATION ANN FOR PREDICTING WBI 

 
5. RESULTS 

 
4.1 GEOGRAPHICALLY WEIGHTED REGRESSION 
 
 GWR captured the spatial relationships between major land cover and urban pattern 
metrics and the indicator of watershed ecological condition, WBI (Table 1).  The results of this 
study suggest that the urban mosaic is equally as important as landscape composition for 
explaining watershed ecological condition.  Overall, the best land cover composition predictor 
of WBI was percent urban (AICc = 323.8, R2 = 0.49).  Landscape Shape Index (LSI), a class 
aggregation or urban clumpiness measure (McGarigal et al., 2002), was the best urban land 
class metric at explaining WBI (AICc = 333.25, R2 = 0.43).  The proportion of a watershed that 
is forest and wetland also proved to be statistically significant at explaining some of the 
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variability of WBI.  The urban land configuration metrics: Mean of Related Circumscribing 
Circle Distribution (CIRCLE_MN), Patch Cohesion Index (COHESION), Mean of Fractal 
Index Distribution (FRAC_MN), Mean of Perimeter-Area Ratio Distribution (PARA_MN), 
and Aggregation Index (AI) also proved to be statistically significant at explaining a portion of 
the variability of WBI.  Of the six statistically significant urban class metrics, one is an urban 
density measure, three are urban patch shape measures, one is an urban patch connectivity 
measure, and one is an urban contagion/interspersion measure (McGarigal et al., 2002).  The 
composition metric percent agricultural was only marginally significant (P-value = 0.055).  The 
urban land configuration metrics Range of Contiguity Index Distribution (CONTIG_RA) and 
Standard Deviation of Related Circumscribing Circle Distribution (CIRCLE_SD) were found 
to be not statistically significant at explaining watershed ecological condition (P-value = 0.293 
and 0.423, respectively). 
 
 

TABLE 1 
GWR BIVARIATE RESULTS BETWEEN WBI AND LANDSCAPE PREDICTORS 

 

 
 
4.2 ARTIFICIAL NEURAL NETWORKS 
 
 Highly significant non-linear relationships were found between urban land 
configuration metrics and the indicator of watershed ecological condition (Table 2).  The 
results of the apriori ANN models vary between R2 (adjusted) = 0.97, P<0.0001 for model 1 and 
R2 (adjusted) = 0.22, P<0.0004 for model 5.  Observed versus predicted WBI (average F-IBI) is 
shown for the best overall urban configuration ANN model (Figure 4). 
 

TABLE 2 
APRIORI ANN MODEL RESULTS BETWEEN WBI AND URBAN LAND 

COFIGURATION METRICS 
 

 
 

GWR Predictor AICc R Square DF F P -value
Rank

1 % Urban 323.8 0.49 39.82 4.52 <0.001
2 LSI 333.25 0.43 39.19 3.33 0.002
3 % Forest 330.45 0.4 40.21 3.45 0.002
4 CIRCLE_MN 333.79 0.4 39.89 3.25 0.004
5 % Wetland 331.25 0.39 40.32 3.41 0.002
6 COHESION 333.57 0.38 40.54 3.28 0.004
7 FRAC_MN 334.38 0.38 39.66 2.85 0.008
8 PARA_MN 337.93 0.34 39.54 2.37 0.02
9 AI 338.39 0.29 40.13 2.08 0.031
10 % Agland 335.12 0.15 44.04 1.98 0.055
11 CONTIG_RA 334.52 0.05 45.75 1.09 0.293
12 CIRCLE_SD 334.98 0.04 45.92 0.82 0.423

Model Independent Variables Number of R  Square P -value RMSE
Rank Hidden Nodes Adjusted

1 LSI, CIRCLE_MN, COHESION, FRAC_MN, PARA_MN, and AI 6 0.97 <0.0001 0.9852
2 LSI, CIRCLE_MN, COHESION, FRAC_MN, and PARA_MN 5 0.93 <0.0001 1.8261
3 LSI, CIRCLE_MN, COHESION, and FRAC_MN 4 0.76 <0.0001 3.3803
4 LSI, CIRCLE_MN, and COHESION 3 0.51 <0.0001 4.8493
5 LSI, and CIRCLE_MN 2 0.22 0.0004 6.1012
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5. DISCUSSION AND CONCLUSION 

 
 In recent landscape studies, configuration of land cover/land use has proven to be 
highly related to aquatic conditions (Alberti et al., 2007; Shandas and Alberti, 2009).  Although 
studies like these provide detailed information for use at the landscape scale, they rarely 
acknowledge and address the needs of spatial data.  Lennon (2000) called attention to these 
problems in ecological research and argued that virtually all geographic analyses had to be 
redone by taking into account spatial autocorrelation.  Furthermore, to date, few studies have 
tried to model non-linear relationships between landscape predictors and indicators of aquatic 
condition.  By investigating the non-linear relationships between urban patterns and ecological 
conditions, knowledge related to specific thresholds of effects can be gained.  The response 
profile for model 1 provides insight on how urban patterns combine to relate to watershed 
ecological condition (Figure 5). 

 

 
FIGURE 4 

ACTUAL VERSUS PREDICTED PLOT FROM FIRST RANKED ANN MODEL 
 
 
 

 
FIGURE 5 

RESPONSE PROFILE OF FIRST RANKED ANN MODEL 
 

 In conclusion, this study provides an exploration of problematic phenomenon related 
to landscape-aquatic condition research.  Specifically, spatial and scale dependencies of 
ecological condition indicators and quantitative methods that address non-linear needs were 
investigated.  ESDA provided a prerequisite addendum for investigating spatial dependencies 
of when using ecological condition indicators.  Further, by combining GWR and ANN an 
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improved methodology for investigating non-linear relationships between landscape predictors 
and ecological condition was revealed.  Knowledge from studies like these help determine 
processes that need to be modified or maintained to ensure the future of global systems.  
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